Real-Time Results for High Order Neural Identification and Block Control Transformation Form Using High Order Sliding Modes

In this paper, real‐time results for a novel continuous‐time adaptive tracking controller algorithm for nonlinear multiple input multiple output systems are presented. The control algorithm includes the combination of a recurrent high order neural network with block control transformation using a hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2015-11, Vol.17 (6), p.2435-2451
Hauptverfasser: Rodríguez, Sergio Alvarez, Castañeda Hdez, Carlos E., Morfin G., Onofre A., Jurado, Francisco, Prado, P. Esquivel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, real‐time results for a novel continuous‐time adaptive tracking controller algorithm for nonlinear multiple input multiple output systems are presented. The control algorithm includes the combination of a recurrent high order neural network with block control transformation using a high order sliding modes technique as control law. A neural network is used to identify the dynamic plant behavior where a filtered error algorithm is used to train the neural identifier. A decentralized high order sliding mode, named the twisting algorithm, is used to design chattering‐reduced independent controllers to solve the trajectory tracking problem for a robot arm with three degrees of freedom. Stability analyses are given via a Lyapunov approach.
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.1139