Conformal spectral stability estimates for the Dirichlet Laplacian

We study the eigenvalue problem for the Dirichlet Laplacian in bounded simply connected plane domains Ω⊂C by reducing it, using conformal transformations, to the weighted eigenvalue problem for the Dirichlet Laplacian in the unit disc D. This allows us to estimate the variation of the eigenvalues of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2015-11, Vol.288 (16), p.1822-1833
Hauptverfasser: Burenkov, V. I., Gol'dshtein, V., Ukhlov, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the eigenvalue problem for the Dirichlet Laplacian in bounded simply connected plane domains Ω⊂C by reducing it, using conformal transformations, to the weighted eigenvalue problem for the Dirichlet Laplacian in the unit disc D. This allows us to estimate the variation of the eigenvalues of the Dirichlet Laplacian upon domain perturbation via energy type integrals for a large class of “conformal regular” domains which includes all quasidiscs, i.e. images of the unit disc under quasiconformal homeomorphisms of the plane onto itself. Boundaries of such domains can have any Hausdorff dimension between one and two.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201400253