The First Principal Component of Multifaceted Variables: It's More Than a G Thing
Ree, Carretta, and Teachout (2015) raise the need for further investigation into dominant general factors (DGFs) and their prevalence in measures used for the purposes of employee selection, development, and performance measurement. They imply that a method of choice for estimating the contribution...
Gespeichert in:
Veröffentlicht in: | Industrial and organizational psychology 2015-09, Vol.8 (3), p.446-452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ree, Carretta, and Teachout (2015) raise the need for further investigation into dominant general factors (DGFs) and their prevalence in measures used for the purposes of employee selection, development, and performance measurement. They imply that a method of choice for estimating the contribution of DGFs is principal components analysis (PCA), and they interpret the variance accounted for by the first component of the PCA solution as indicative of the contribution of a general factor. In this response, we illustrate the hazard of equating the first component of a PCA with a general factor, and we illustrate how this becomes particularly problematic when applying PCA to multifaceted variables. Rather than simply critique this use of PCA, we offer an alternative approach that helps to address and illustrate the problem that we raise. |
---|---|
ISSN: | 1754-9426 1754-9434 |
DOI: | 10.1017/iop.2015.61 |