Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest

Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2015-11, Vol.31 (11), p.1665-1673
Hauptverfasser: Mannazzu, Ilaria, Landolfo, Sara, da Silva, Teresa Lopes, Buzzini, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expected to reach about US$1.4 billion in 2018. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an appealing alternative to the chemical route, partly due to consumer concerns against synthetic pigments. Among the yeasts, and apart from the pigmented species Phaffia rhodozyma (and its teleomorph Xanthophyllomyces dendrorhous), a handful of species of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus are well known carotenoid producers. These are known as ‘red yeasts’, and their ability to synthesize mixtures of carotenoids from low-cost carbon sources has been broadly studied recently. Here, in agreement with the renewed interest in microbial carotenoids, the recent literature is reviewed regarding the taxonomy of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus, the stress factors that influence their carotenogenesis, and the most advanced analytical tools for evaluation of carotenoid production. Moreover, a synopsis of the molecular and “-omic” tools available for elucidation of the metabolic pathways of the microbial carotenoids is reported.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-015-1927-x