Microstructural and Tribological Properties of Al^sub 2^O3-13pctTiO2 Thermal Spray Coatings Deposited by Flame Spraying
THe present investigation has been conducted to study the tribological properties of Al^sub 2^O3-13pctTiO2 (AT-13) ceramic coatings deposited on a low carbon steel type E335 by using a thermal flame spray technique. The microstructure and phase composition of wire and coatings were analyzed by scann...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2015-10, Vol.46 (5), p.2394 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | THe present investigation has been conducted to study the tribological properties of Al^sub 2^O3-13pctTiO2 (AT-13) ceramic coatings deposited on a low carbon steel type E335 by using a thermal flame spray technique. The microstructure and phase composition of wire and coatings were analyzed by scanning electron microscope, energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Measurements of micro hardness were also performed on the surface of the coatings. The tribological tests were carried out using a pin-on-disk tribometer at different loads. All tests were performed using two disks as counter body, namely Al^sub 2^O3-ZrO2 (AZ-25) and Al^sub 2^O3-TiO2 (AT-3) which formed couple 1 and couple 2, respectively, in order to work out the wear rate and friction coefficient. Roughness profiles were also evaluated before and after each test. The SEM showed that the dense microstructure of Al^sub 2^O3-TiO2 (AT-13) coatings have a homogenous lamellar morphology and complex of several phases with the presence of porosities and unmelted particles. The XRD analysis of the wire before the spray showed a majority phase of [alpha]-Al^sub 2^O3 rhombohedral structure and a secondary phase of Al^sub 2^TiO^sub 5^ orthorhombic structure with little traces of TiO2 (rutile) tetragonal structure, whereas the XRD of the coating revealed the disappearance of TiO2 replaced by the formation of a new metastable phase γ-Al^sub 2^O3 cubic structure. The tribological results showed that the applied contact pressure affects the variation of the friction coefficient with time and that it decreases with the rise of the normal force of contact. It was found also that the couple 2 with nearly chemical compositions of spray-coated (AT-13) and disk (AT-3) exhibited much higher wear resistance than the couple 1 although they have sliding coefficient of friction nearly. |
---|---|
ISSN: | 1073-5615 1543-1916 |
DOI: | 10.1007/s11663-015-0412-0 |