Sesquiterpene Lactones Inhibit Advanced Oxidation Protein Product-Induced MCP-1 Expression in Podocytes via an IKK/NF-[kappa]B-Dependent Mechanism
Inflammation is a relevant factor in the pathogenesis of diabetes nephropathy (DN). Sesquiterpene lactones (SLs), originally isolated from Tanacetum parthenium, have been reported to exhibit anti-inflammatory effects but few studies have examined their effects on DN. To determine whether advanced ox...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2015-01, Vol.2015 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inflammation is a relevant factor in the pathogenesis of diabetes nephropathy (DN). Sesquiterpene lactones (SLs), originally isolated from Tanacetum parthenium, have been reported to exhibit anti-inflammatory effects but few studies have examined their effects on DN. To determine whether advanced oxidation protein products (AOPPs) can induce the expression of chemokine monocyte chemoattractant protein- (MCP-) 1 in cultured mouse podocytes and to explore the mechanisms of the potential renoprotection of SLs, we treated podocytes with AOPPs and SLs (parthenolide and its derivatives micheliolide, compound 1, and compound 2). MCP-1 mRNA and protein expression were tested using quantitative real-time PCR and ELISA, respectively, and the protein levels of IKKβ, phospho-IKKβ, IκBα, NF-κB p65, phospho-NF-κB p65, and tubulin were analyzed by Western blotting. AOPPs activated the expression of MCP-1 mRNA and protein in a dose- and time-dependent manner, activated IKKβ and NF-κB p65, and promoted IκBα degradation. The IKK/NF-κB inhibitor parthenolide decreased AOPP-induced MCP-1 expression. Pretreatment with SLs inhibited MCP-1 mRNA and protein expression and suppressed IKKβ and NF-κB p65 phosphorylation and IκBα degradation. Taken together, these findings provide a novel explanation for the anti-inflammatory effects of SLs that will ultimately benefit DN and potentially other inflammatory and immune renal diseases. |
---|---|
ISSN: | 1942-0900 1942-0994 |
DOI: | 10.1155/2015/934058 |