A “Four Integers” Theorem and a “Five Integers” Theorem

The recent exciting results by Bhargava, Conway, Hanke, Kaplansky, Rouse, and Schneeberger concerning the representabiltity of integers by positive integral quadratic forms in any number of variables are presented. These results build on the earlier work of Dickson, Halmos, Ramanujan, and Willerding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2015-06, Vol.122 (6), p.528-536
1. Verfasser: Williams, Kenneth S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent exciting results by Bhargava, Conway, Hanke, Kaplansky, Rouse, and Schneeberger concerning the representabiltity of integers by positive integral quadratic forms in any number of variables are presented. These results build on the earlier work of Dickson, Halmos, Ramanujan, and Willerding on quadratic forms. Two results of this type for positive diagonal ternary forms are proved. These are the “four integers” and “five integers” theorems of the title.
ISSN:0002-9890
1930-0972
DOI:10.4169/amer.math.monthly.122.6.528