Interactions of DPP-4 and integrin [beta]1 influences endothelial-to-mesenchymal transition
Integrin β1 and dipeptidyl peptidase (DPP)-4 play roles in endothelial cell biology. Vascular endothelial growth factor (VEGF)-A inhibits endothelial-to-mesenchymal transition (EndMT) through VEGF-R2, but through VEGF-R1 promotes EndMT by reducing the bioavailability of VEGF-A. Here we tested whethe...
Gespeichert in:
Veröffentlicht in: | Kidney international 2015-09, Vol.88 (3), p.479 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integrin β1 and dipeptidyl peptidase (DPP)-4 play roles in endothelial cell biology. Vascular endothelial growth factor (VEGF)-A inhibits endothelial-to-mesenchymal transition (EndMT) through VEGF-R2, but through VEGF-R1 promotes EndMT by reducing the bioavailability of VEGF-A. Here we tested whether DPP-4-integrin β1 interactions have a role in EndMT in the renal fibrosis of diabetic nephropathy. In streptozotocin-induced fibrotic kidneys in diabetic CD-1 mice, levels of endothelial DPP-4, integrin β1, and phospho-integrin β1 were all higher and associated with plasma cystatin C elevation. The DPP-4 inhibitor linagliptin ameliorated kidney fibrosis, reduced plasma cystatin C levels, and suppressed endothelial levels of DPP-4, integrin β1, and phospho-integrin β1. In cultured endothelial cells, DPP-4 and integrin β1 physically interacted. Suppression of DPP-4 by siRNA was associated with suppression of integrin β1 and vice versa. Knockdown of either integrin β1 or DPP-4 resulted in the silencing of TGF-β2-induced TGF-β receptor heterodimer formation, smad3 phosphorylation, and EndMT. DPP-4 negatively regulated endothelial viability signaling by VEGF-R2 suppression and VEGF-R1 induction in endothelial cells. Thus, DPP-4 and integrin β1 interactions regulate key endothelial cell signal transduction in both physiological and pathological conditions including EndMT. Hence, inhibiting DPP-4 may be a therapeutic target for treating kidney fibrosis in diabetes. |
---|---|
ISSN: | 0085-2538 1523-1755 |
DOI: | 10.1038/ki.2015.103 |