Lepton-flavored scalar dark matter with minimal flavor violation

A bstract We explore scalar dark matter that is part of a lepton flavor triplet satisfying symmetry requirements under the hypothesis of minimal flavor violation. Beyond the standard model, the theory contains in addition three right-handed neutrinos that participate in the seesaw mechanism for ligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-04, Vol.2015 (4), p.1, Article 174
Hauptverfasser: Lee, Chao-Jung, Tandean, Jusak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We explore scalar dark matter that is part of a lepton flavor triplet satisfying symmetry requirements under the hypothesis of minimal flavor violation. Beyond the standard model, the theory contains in addition three right-handed neutrinos that participate in the seesaw mechanism for light neutrino mass generation. The dark-matter candidate couples to standard-model particles via Higgs-portal renormalizable interactions as well as to leptons through dimension-six operators, all of which have minimal flavor violation built-in. We consider restrictions on the new scalars from the Higgs boson measurements, observed relic density, dark-matter direct detection experiments, LEP II measurements on e + e − scattering into a photon plus missing energy, and searches for flavor-violating lepton decays. The viable parameter space can be tested further with future data. Also, we investigate the possibility of the new scalars’ couplings accounting for the tentative hint of Higgs flavor-violating decay h → μτ recently detected in the CMS experiment. They are allowed by constraints from other Higgs data to produce a rate of this decay roughly compatible with the CMS finding.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2015)174