Hydrodynamic transport coefficients for the non-conformal quark-gluon plasma from holography

A bstract In this paper we obtain holographic formulas for the transport coefficients κ and τ π present in the second-order derivative expansion of relativistic hydrodynamics in curved spacetime associated with a non-conformal strongly coupled plasma described holographically by an Einstein+Scalar a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-02, Vol.2015 (2), p.1, Article 51
Hauptverfasser: Finazzo, Stefano I., Rougemont, Romulo, Marrochio, Hugo, Noronha, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract In this paper we obtain holographic formulas for the transport coefficients κ and τ π present in the second-order derivative expansion of relativistic hydrodynamics in curved spacetime associated with a non-conformal strongly coupled plasma described holographically by an Einstein+Scalar action in the bulk. We compute these coefficients as functions of the temperature in a bottom-up non-conformal model that is tuned to reproduce lattice QCD thermodynamics at zero baryon chemical potential. We directly compute, besides the speed of sound, 6 other transport coefficients that appear at second-order in the derivative expansion. We also give an estimate for the temperature dependence of 11 other transport coefficients taking into account the simplest contribution from non-conformal effects that appear near the QCD crossover phase transition. Using these results, we construct an Israel-Stewart-like theory in flat spacetime containing 13 of these 17 transport coefficients that should be suitable for phenomenological applications in the context of numerical hydrodynamic simulations of the strongly-coupled, non-conformal quark-gluon plasma. Using several different approximations, we give parametrizations for the temperature dependence of all the second-order transport coefficients that appear in this theory in a format that can be easily implemented in existing numerical hydrodynamic codes.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2015)051