Exact spectrum of the spin-s Heisenberg chain with generic non-diagonal boundaries

A bstract The off-diagonal Bethe ansatz method is generalized to the high spin integrable systems associated with the su (2) algebra by employing the spin- s isotropic Heisenberg chain model with generic integrable boundaries as an example. With the fusion techniques, certain closed operator identit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-02, Vol.2015 (2), p.1, Article 36
Hauptverfasser: Cao, Junpeng, Cui, Shuai, Yang, Wen-Li, Shi, Kangjie, Wang, Yupeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract The off-diagonal Bethe ansatz method is generalized to the high spin integrable systems associated with the su (2) algebra by employing the spin- s isotropic Heisenberg chain model with generic integrable boundaries as an example. With the fusion techniques, certain closed operator identities for constructing the functional T − Q relations and the Bethe ansatz equations are derived. It is found that a variety of inhomogeneous T − Q relations obeying the operator product identities can be constructed. Numerical results for two-site s = 1 case indicate that an arbitrary choice of the derived T − Q relations is enough to give the complete spectrum of the transfer matrix.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2015)036