Optimizing Sparse Linear Algebra for Large-Scale Graph Analytics

Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shared memory multiprocessor systems, enabling analyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer (Long Beach, Calif.) Calif.), 2015-08, Vol.48 (8), p.26-34
Hauptverfasser: Buono, Daniele, Gunnels, John A., Xinyu Que, Checconi, Fabio, Petrini, Fabrizio, Tai-Ching Tuan, Long, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shared memory multiprocessor systems, enabling analysts to more easily discern meaningful data relationships, such as those in social networks.
ISSN:0018-9162
1558-0814
DOI:10.1109/MC.2015.228