Carbazole-endcapped Spiro[fluorene-9,9'-xanthene] with Large Steric Hindrance as Hole-transporting Host for Heavily-doped and High Performance OLEDs

In this work, we designed and synthesized a novel spirocyclic compound functionalized spiro[fluorene-9,9'- xanthene] with carbazole group (2-carbazolyl-spiro[fluorene-9,9'-xanthene], SFX-Cz) via Friedel-Crafts and Ullmann reaction, which is expected to own high thermal and morphological stability, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemistry 2015-08, Vol.33 (8), p.955-960
Hauptverfasser: Zhao, Xianghua, Wu, Yukun, Shi, Nannan, Li, Xiaoyu, Zhao, Yi, Sun, Mingli, Ding, Dongxue, Xu, Hui, Xie, Linghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we designed and synthesized a novel spirocyclic compound functionalized spiro[fluorene-9,9'- xanthene] with carbazole group (2-carbazolyl-spiro[fluorene-9,9'-xanthene], SFX-Cz) via Friedel-Crafts and Ullmann reaction, which is expected to own high thermal and morphological stability, and good carrier injection/ transporting properties due to the excellent hole transporting characteristics of carbazole and cruciform structure of spiro[fluorene-9,9'-xanthene]. The carbazole end-capped spiro[fluorene-9,9'-xanthene] SFX-Cz based PhOLEDs with Flrpic as phosphor emitter have been researched by varying dopant concentration, which exhibit the maximum EQEs of 8.9%, 7.4%, 9.1%, and 4.7% with the doping increasing from 10% to 50%. The higher performance PhOLEDs are independent on concentration variation from 10% to 30%, which suggests the bulky steric hindrance of SFX-Cz might be a potential canditate for high performance and inexpensive device with simplified process.
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201500252