10 Gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes

Over the past decade, visible light communication (VLC) systems have typically operated between 50 Mbps and 3.4 Gbps. In this paper, we propose and evaluate mobile VLC systems that operate at 10 Gbps. The enhancements in channel bandwidth and data rate are achieved by the introduction of laser diode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2015-08, Vol.7 (8), p.718-735
Hauptverfasser: Hussein, Ahmed Taha, Elmirghani, Jaafar M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the past decade, visible light communication (VLC) systems have typically operated between 50 Mbps and 3.4 Gbps. In this paper, we propose and evaluate mobile VLC systems that operate at 10 Gbps. The enhancements in channel bandwidth and data rate are achieved by the introduction of laser diodes (LDs), angle diversity receivers (ADR), imaging receivers, relay nodes, and delay adaptation techniques. We propose three mobile VLC systems: an ADR relay assisted LD-VLC, an imaging relay assisted LD-VLC (IMGR-LD), and select-the-best imaging relay assisted LD-VLC. The ADR and imaging receiver are proposed for the VLC system to mitigate the intersymbol interference, maximize the signal-to-noise ratio (SNR), and reduce the impact of multipath dispersion due to mobility. The combination of IMGR-LD with a delay adaptation technique adds a degree of freedom to the link design, which results in a VLC system that has the ability to provide high data rates under mobility. The proposed IMGR-LD system achieves significant improvements in the SNR over other systems in the worst case scenario in the considered real indoor environment.
ISSN:1943-0620
1943-0639
DOI:10.1364/JOCN.7.000718