Overlapping PPM for band-limited visible light communication and dimming
The synthesis of visible light communication (VLC) and lighting state control necessitates data-light modulation that can accommodate intensity control. A number of techniques that enable both optical wireless data transmission and intensity control of light-emitting diodes (LEDs) have been proposed...
Gespeichert in:
Veröffentlicht in: | Journal of solid state lighting 2015-05, Vol.2 (1), p.1, Article 3 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of visible light communication (VLC) and lighting state control necessitates data-light modulation that can accommodate intensity control. A number of techniques that enable both optical wireless data transmission and intensity control of light-emitting diodes (LEDs) have been proposed as a response to this need. Relevant schemes leverage amplitude modulation (AM)/continuous current reduction (CCR) and/or pulse-width modulation (PWM) for dimming capability. Two-level schemes related to PWM, such as on-off keying with compensation time (OOK + CT), variable pulse position modulation (VPPM), and multiple pulse position modulation (MPPM), are most commonly investigated. In this paper, we survey and compare OOK + CT, VPPM and MPPM. Moreover, we propose a novel approach towards dimming and data transmission through the variation of codeword weights in overlapping pulse-position modulation (OPPM). The proposed approach has comparatively high spectral efficiency. Using realistic constraints of a practical VLC system, analysis reveals that OPPM can increase data rates by more than 20Mbps over expected performance of related, two-level schemes, when using LEDs suitable for lighting that have relatively low modulation bandwidths. |
---|---|
ISSN: | 2196-1107 2196-1107 |
DOI: | 10.1186/s40539-015-0022-0 |