Parameter Estimation of Kinetic Model Equations for Chemical Leaching of Coal

Coals are invariably associated with mineral matter, which makes it unsuitable for efficient utilisation. For difficult-to-wash coals, advanced coal beneficiation technologies like chemical leaching methods are under development. In this paper, kinetic equations using different methods have been evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical product and process modeling 2014-12, Vol.9 (2), p.133-141
Hauptverfasser: Sriramoju, Santosh Kumar, Suresh, A., Dash, Pratik Swarup, Banerjee, P. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coals are invariably associated with mineral matter, which makes it unsuitable for efficient utilisation. For difficult-to-wash coals, advanced coal beneficiation technologies like chemical leaching methods are under development. In this paper, kinetic equations using different methods have been evolved, and related parameters have been estimated, using the experimental results obtained during coal leaching process. As coal is a heterogeneous rock, three different methods namely (i) parametric estimation through rate equation, (ii) non-linear regression and (iii) parametric estimation through shrinking core model have been developed and validated to check the minimum level of permitted error tolerance. Experiments were designed, using full factorial design with three variables, which are sensitive to the process. Values of activation energy and obtained, using the parametric estimation of rate equation and shrinking core model, are almost in the same range. The order of the reaction for silica and alumina is two, using rate equation method. The parametric data obtained from the polynomial regression method were compared with the actual data. The exponential polynomial provides a better fit for the chemical leaching process of coal.
ISSN:2194-6159
1934-2659
DOI:10.1515/cppm-2014-0009