Maximizing Demineralization during Chemical Leaching of Coal through Optimal Reagent Addition Policy
The main objective of the optimal reagent addition was to maximize the quantity of product with minimal quantity of feed. In the present study, the optimal addition of reagents during the chemical leaching of coal was computed. Chemical leaching of coal was carried out using aqueous solution of caus...
Gespeichert in:
Veröffentlicht in: | Chemical product and process modeling 2015-03, Vol.10 (1), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main objective of the optimal reagent addition was to maximize the quantity of product with minimal quantity of feed. In the present study, the optimal addition of reagents during the chemical leaching of coal was computed. Chemical leaching of coal was carried out using aqueous solution of caustic to dissolve and remove the mineral matter. Simulation studies were carried out using the optimal reagent addition for chemical leaching of coal in batch reactors. This was experimentally validated, using the bench-scale reactor setup with hierarchical optimization architecture. Chemical leaching experiments were conducted using West Bokaro coal. Samples collected at various time intervals during the experiment were analyzed. Variations in silica (SiO
) and alumina (Al
) concentrations, which were main constituents present in coal ash, were evaluated with respect to time for different concentrations of caustic. The simulation studies for optimal addition were carried out at 6, 8 and 10 intervals. An objective function, required for maximum ash removal, was solved, using sequential quadratic programming (SQP) algorithm to find out the optimum sequence for reagent dosing. An improvement of about 1% (wt) ash reduction on an average was observed with implementation of optimal reagent addition. |
---|---|
ISSN: | 2194-6159 1934-2659 |
DOI: | 10.1515/cppm-2014-0019 |