Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification
In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial lo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2015-10, Vol.53 (10), p.5338-5351 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5351 |
---|---|
container_issue | 10 |
container_start_page | 5338 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 53 |
creator | Jiayi Li Hongyan Zhang Liangpei Zhang |
description | In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers. |
doi_str_mv | 10.1109/TGRS.2015.2421638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1699268508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7097693</ieee_id><sourcerecordid>3760324711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</originalsourceid><addsrcrecordid>eNo9kFFPwjAURhujiYj-AOPLEp-Hve3aro-GIGAwJoDPTRm3pDjYbIeRf-8mxKf7cs53k0PIPdABANVPy_F8MWAUxIBlDCTPL0gPhMhTKrPskvQoaJmyXLNrchPjllLIBKge2Yyc84XHfZMsDjWG2v9gmc7wG8vk7VA2vrHxM3mtfAfUNkRM5lgHjK1hG1_tE1eFZHJs1Vhj0QRbJtOd3WAyLG2Mvh3_w27JlbNlxLvz7ZOPl9FyOEln7-Pp8HmWFkzzJs0zJQpeCKrXKBVnwnElVitqnV5nTkmO3OG6oBxaEkAoKqVyNNO6gFWugPfJ42m3DtXXAWNjttUh7NuXBqTWTOaC5i0FJ6oIVYwBnamD39lwNEBN19N0PU3X05x7ts7DyfGI-M8rqpXUnP8CcEByPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699268508</pqid></control><display><type>article</type><title>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Jiayi Li ; Hongyan Zhang ; Liangpei Zhang</creator><creatorcontrib>Jiayi Li ; Hongyan Zhang ; Liangpei Zhang</creatorcontrib><description>In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2421638</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Collaboration ; Dictionaries ; Feature extraction ; hyperspectral imagery ; Hyperspectral imaging ; Joints ; multitask learning ; sparse representation ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5338-5351</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</citedby><cites>FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7097693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7097693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiayi Li</creatorcontrib><creatorcontrib>Hongyan Zhang</creatorcontrib><creatorcontrib>Liangpei Zhang</creatorcontrib><title>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.</description><subject>Classification</subject><subject>Collaboration</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Joints</subject><subject>multitask learning</subject><subject>sparse representation</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAURhujiYj-AOPLEp-Hve3aro-GIGAwJoDPTRm3pDjYbIeRf-8mxKf7cs53k0PIPdABANVPy_F8MWAUxIBlDCTPL0gPhMhTKrPskvQoaJmyXLNrchPjllLIBKge2Yyc84XHfZMsDjWG2v9gmc7wG8vk7VA2vrHxM3mtfAfUNkRM5lgHjK1hG1_tE1eFZHJs1Vhj0QRbJtOd3WAyLG2Mvh3_w27JlbNlxLvz7ZOPl9FyOEln7-Pp8HmWFkzzJs0zJQpeCKrXKBVnwnElVitqnV5nTkmO3OG6oBxaEkAoKqVyNNO6gFWugPfJ42m3DtXXAWNjttUh7NuXBqTWTOaC5i0FJ6oIVYwBnamD39lwNEBN19N0PU3X05x7ts7DyfGI-M8rqpXUnP8CcEByPw</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Jiayi Li</creator><creator>Hongyan Zhang</creator><creator>Liangpei Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201510</creationdate><title>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</title><author>Jiayi Li ; Hongyan Zhang ; Liangpei Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Collaboration</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Joints</topic><topic>multitask learning</topic><topic>sparse representation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiayi Li</creatorcontrib><creatorcontrib>Hongyan Zhang</creatorcontrib><creatorcontrib>Liangpei Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiayi Li</au><au>Hongyan Zhang</au><au>Liangpei Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-10</date><risdate>2015</risdate><volume>53</volume><issue>10</issue><spage>5338</spage><epage>5351</epage><pages>5338-5351</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2015.2421638</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5338-5351 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_1699268508 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Collaboration Dictionaries Feature extraction hyperspectral imagery Hyperspectral imaging Joints multitask learning sparse representation Training |
title | Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Superpixel-Level%20Multitask%20Joint%20Sparse%20Representation%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jiayi%20Li&rft.date=2015-10&rft.volume=53&rft.issue=10&rft.spage=5338&rft.epage=5351&rft.pages=5338-5351&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2421638&rft_dat=%3Cproquest_RIE%3E3760324711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699268508&rft_id=info:pmid/&rft_ieee_id=7097693&rfr_iscdi=true |