Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification

In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2015-10, Vol.53 (10), p.5338-5351
Hauptverfasser: Jiayi Li, Hongyan Zhang, Liangpei Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5351
container_issue 10
container_start_page 5338
container_title IEEE transactions on geoscience and remote sensing
container_volume 53
creator Jiayi Li
Hongyan Zhang
Liangpei Zhang
description In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.
doi_str_mv 10.1109/TGRS.2015.2421638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1699268508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7097693</ieee_id><sourcerecordid>3760324711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</originalsourceid><addsrcrecordid>eNo9kFFPwjAURhujiYj-AOPLEp-Hve3aro-GIGAwJoDPTRm3pDjYbIeRf-8mxKf7cs53k0PIPdABANVPy_F8MWAUxIBlDCTPL0gPhMhTKrPskvQoaJmyXLNrchPjllLIBKge2Yyc84XHfZMsDjWG2v9gmc7wG8vk7VA2vrHxM3mtfAfUNkRM5lgHjK1hG1_tE1eFZHJs1Vhj0QRbJtOd3WAyLG2Mvh3_w27JlbNlxLvz7ZOPl9FyOEln7-Pp8HmWFkzzJs0zJQpeCKrXKBVnwnElVitqnV5nTkmO3OG6oBxaEkAoKqVyNNO6gFWugPfJ42m3DtXXAWNjttUh7NuXBqTWTOaC5i0FJ6oIVYwBnamD39lwNEBN19N0PU3X05x7ts7DyfGI-M8rqpXUnP8CcEByPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699268508</pqid></control><display><type>article</type><title>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Jiayi Li ; Hongyan Zhang ; Liangpei Zhang</creator><creatorcontrib>Jiayi Li ; Hongyan Zhang ; Liangpei Zhang</creatorcontrib><description>In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2421638</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Collaboration ; Dictionaries ; Feature extraction ; hyperspectral imagery ; Hyperspectral imaging ; Joints ; multitask learning ; sparse representation ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5338-5351</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</citedby><cites>FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7097693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7097693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiayi Li</creatorcontrib><creatorcontrib>Hongyan Zhang</creatorcontrib><creatorcontrib>Liangpei Zhang</creatorcontrib><title>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.</description><subject>Classification</subject><subject>Collaboration</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Joints</subject><subject>multitask learning</subject><subject>sparse representation</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAURhujiYj-AOPLEp-Hve3aro-GIGAwJoDPTRm3pDjYbIeRf-8mxKf7cs53k0PIPdABANVPy_F8MWAUxIBlDCTPL0gPhMhTKrPskvQoaJmyXLNrchPjllLIBKge2Yyc84XHfZMsDjWG2v9gmc7wG8vk7VA2vrHxM3mtfAfUNkRM5lgHjK1hG1_tE1eFZHJs1Vhj0QRbJtOd3WAyLG2Mvh3_w27JlbNlxLvz7ZOPl9FyOEln7-Pp8HmWFkzzJs0zJQpeCKrXKBVnwnElVitqnV5nTkmO3OG6oBxaEkAoKqVyNNO6gFWugPfJ42m3DtXXAWNjttUh7NuXBqTWTOaC5i0FJ6oIVYwBnamD39lwNEBN19N0PU3X05x7ts7DyfGI-M8rqpXUnP8CcEByPw</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Jiayi Li</creator><creator>Hongyan Zhang</creator><creator>Liangpei Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201510</creationdate><title>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</title><author>Jiayi Li ; Hongyan Zhang ; Liangpei Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8475c3c509de67325f375bb0af9d4f763e3fedc03184711570667f0499c1b8713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Collaboration</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Joints</topic><topic>multitask learning</topic><topic>sparse representation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiayi Li</creatorcontrib><creatorcontrib>Hongyan Zhang</creatorcontrib><creatorcontrib>Liangpei Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiayi Li</au><au>Hongyan Zhang</au><au>Liangpei Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-10</date><risdate>2015</risdate><volume>53</volume><issue>10</issue><spage>5338</spage><epage>5351</epage><pages>5338-5351</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2015.2421638</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5338-5351
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_1699268508
source IEEE Electronic Library (IEL)
subjects Classification
Collaboration
Dictionaries
Feature extraction
hyperspectral imagery
Hyperspectral imaging
Joints
multitask learning
sparse representation
Training
title Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Superpixel-Level%20Multitask%20Joint%20Sparse%20Representation%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jiayi%20Li&rft.date=2015-10&rft.volume=53&rft.issue=10&rft.spage=5338&rft.epage=5351&rft.pages=5338-5351&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2421638&rft_dat=%3Cproquest_RIE%3E3760324711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699268508&rft_id=info:pmid/&rft_ieee_id=7097693&rfr_iscdi=true