Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification
In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial lo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2015-10, Vol.53 (10), p.5338-5351 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2015.2421638 |