Isoperimetry in Two-Dimensional Percolation

We study isoperimetric sets, i.e., sets with minimal boundary for a prescribed volume, on the unique infinite connected component of supercritical bond percolation on the square lattice. In the limit of the volume tending to infinity, properly scaled isoperimetric sets are shown to converge (in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2015-09, Vol.68 (9), p.1483-1531
Hauptverfasser: Biskup, Marek, Louidor, Oren, Procaccia, Eviatar B., Rosenthal, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study isoperimetric sets, i.e., sets with minimal boundary for a prescribed volume, on the unique infinite connected component of supercritical bond percolation on the square lattice. In the limit of the volume tending to infinity, properly scaled isoperimetric sets are shown to converge (in the Hausdorff metric) to the solution of an isoperimetric problem in ℝ2 with respect to a particular norm. As part of the proof we also show that the anchored isoperimetric profile as well as the Cheeger constant of the giant component in finite boxes scale to deterministic quantities. This settles a conjecture of Itai Benjamini for the square lattice. © 2015 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21558