Chitosan Oligosaccharides Inhibit/Disaggregate Fibrils and Attenuate Amyloid [beta]-Mediated Neurotoxicity
Alzheimer's disease (AD) is characterized by a large number of amyloid-β (Aβ) deposits in the brain. Therefore, inhibiting Aβ aggregation or destabilizing preformed aggregates could be a promising therapeutic target for halting/slowing the progression of AD. Chitosan oligosaccharides (COS) have...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2015-05, Vol.16 (5), p.10526 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer's disease (AD) is characterized by a large number of amyloid-β (Aβ) deposits in the brain. Therefore, inhibiting Aβ aggregation or destabilizing preformed aggregates could be a promising therapeutic target for halting/slowing the progression of AD. Chitosan oligosaccharides (COS) have previously been reported to exhibit antioxidant and neuroprotective effects. Recent study shows that COS could markedly decrease oligomeric Aβ-induced neurotoxicity and oxidative stress in rat hippocampal neurons. However, the potential mechanism that COS reduce Aβ-mediated neurotoxicity remains unclear. In the present study, our findings from circular dichroism spectroscopy, transmission electron microscope and thioflavin T fluorescence assay suggested that COS act as an inhibitor of Aβ aggregation and this effect shows dose-dependency. Moreover, data from thioflavin T assay indicated that COS could significantly inhibit fibrils formation and disrupt preformed fibrils in a dose-dependent manner. Furthermore, the addition of COS attenuated Aβ1-42-induced neurotoxicity in rat cortical neurons. Taken together, our results demonstrated for the first time that COS could inhibit Aβ1-42 fibrils formation and disaggregate preformed fibrils, suggesting that COS may have anti-Aβ fibrillogenesis and fibril-destabilizing properties. These findings highlight the potential role of COS as novel therapeutic agents for the prevention and treatment of AD. |
---|---|
ISSN: | 1661-6596 1422-0067 |
DOI: | 10.3390/ijms160510526 |