A High-Throughput Neural Network Accelerator
The authors designed an accelerator architecture for large-scale neural networks, with an emphasis on the impact of memory on accelerator design, performance, and energy. In this article, they present a concrete design at 65 nm that can perform 496 16-bit fixed-point operations in parallel every 1.0...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2015-05, Vol.35 (3), p.24-32 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors designed an accelerator architecture for large-scale neural networks, with an emphasis on the impact of memory on accelerator design, performance, and energy. In this article, they present a concrete design at 65 nm that can perform 496 16-bit fixed-point operations in parallel every 1.02 ns, that is, 452 gop/s, in a 3.02mm 2 , 485-mw footprint (excluding main memory accesses). |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2015.41 |