A High-Throughput Neural Network Accelerator

The authors designed an accelerator architecture for large-scale neural networks, with an emphasis on the impact of memory on accelerator design, performance, and energy. In this article, they present a concrete design at 65 nm that can perform 496 16-bit fixed-point operations in parallel every 1.0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2015-05, Vol.35 (3), p.24-32
Hauptverfasser: Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, Temam, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors designed an accelerator architecture for large-scale neural networks, with an emphasis on the impact of memory on accelerator design, performance, and energy. In this article, they present a concrete design at 65 nm that can perform 496 16-bit fixed-point operations in parallel every 1.02 ns, that is, 452 gop/s, in a 3.02mm 2 , 485-mw footprint (excluding main memory accesses).
ISSN:0272-1732
1937-4143
DOI:10.1109/MM.2015.41