Magnetoelectric properties in bulk and layered composites

Purpose – The purpose of the paper was to present a comparative study on the microstructure and magnetoelectric effect of new magnetoelectric composites based on TbFe2 compound and Ni0.3Zn0.62Cu0.08Fe2O4, CoFe2O4 ferrites as a magnetostrictive phase, Pb(Fe1/2Ta1/2)O3 (PFT), Pb(Fe1/2Nb1/2)O3 relaxors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics international 2015-08, Vol.32 (3), p.110-114
Hauptverfasser: Guzdek, Piotr, Wzorek, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose – The purpose of the paper was to present a comparative study on the microstructure and magnetoelectric effect of new magnetoelectric composites based on TbFe2 compound and Ni0.3Zn0.62Cu0.08Fe2O4, CoFe2O4 ferrites as a magnetostrictive phase, Pb(Fe1/2Ta1/2)O3 (PFT), Pb(Fe1/2Nb1/2)O3 relaxors as a ferroelectric phase and polyvinylidene fluoride (PVDF) as piezoelectric phase. Design/methodology/approach – The ceramic components of composites were prepared by the standard solid-state reaction method. The intermetallic compound TbFe2 was prepared with an arc melting system with a contact-less ignition in a high purity argon atmosphere. The metal – ceramic – polymer composites were prepared in a container in which powder of PVDF were dissolved in N,N-dimethylformamide with continuous mixing and at the controlled temperature. Ceramic composites were prepared as bulk samples and multilayer tape cast and co-sintered laminates. The microstructure of the composites was investigated using scanning electron microscopy (SEM). The magnetoelectric effect of the composites was evaluated at room temperature by means of the dynamic lock-in method. Findings – SEM analysis revealed a dense, fine-grained microstructure and uniform distribution of the metallic, ferrite and relaxor grains in the bulk composites. The SEM image for multilayer composite illustrates the lack of cracks or delaminations at the phase boundaries between the well-sintered ferrite and relaxor layers. For all studied composites, the magnetoelectric coefficients at a lower magnetic field increase, reaches a maximum and then decreases. Originality/value – The progress in electronic technology is directly linked to advances made in materials science. Exploring and characterizing new materials with interesting magnetoelectric properties, in the rapidly growing field of functional materials, is an important task. The paper reports on processing, microstructure and magnetoelectric properties of novel magnetoelectric composites.
ISSN:1356-5362
1758-812X
DOI:10.1108/MI-01-2015-0012