L^sub p^-solvability of parabolic problems with an operator satisfying the Kato conjecture
We study the solvability in the spaces L ^sup p^(0, T;X) of an abstract parabolic equation with an operator defined by a sesquilinear form satisfying the Kato conjecture, where X is a Hilbert space obtained by interpolation between the domain of the form and the dual space. We describe the initial d...
Gespeichert in:
Veröffentlicht in: | Differential equations 2015-06, Vol.51 (6), p.776 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the solvability in the spaces L ^sup p^(0, T;X) of an abstract parabolic equation with an operator defined by a sesquilinear form satisfying the Kato conjecture, where X is a Hilbert space obtained by interpolation between the domain of the form and the dual space. We describe the initial data spaces for various values of p and show that in the most common cases they coincide with the Besov spaces. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266115060087 |