L^sub p^-solvability of parabolic problems with an operator satisfying the Kato conjecture

We study the solvability in the spaces L ^sup p^(0, T;X) of an abstract parabolic equation with an operator defined by a sesquilinear form satisfying the Kato conjecture, where X is a Hilbert space obtained by interpolation between the domain of the form and the dual space. We describe the initial d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2015-06, Vol.51 (6), p.776
1. Verfasser: Selitskii, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the solvability in the spaces L ^sup p^(0, T;X) of an abstract parabolic equation with an operator defined by a sesquilinear form satisfying the Kato conjecture, where X is a Hilbert space obtained by interpolation between the domain of the form and the dual space. We describe the initial data spaces for various values of p and show that in the most common cases they coincide with the Besov spaces.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266115060087