Synthesis of Spherical Bi2WO6 Nanoparticles by a Hydrothermal Route and Their Photocatalytic Properties
Spherical Bi2WO6 nanoparticles were synthesized by a hydrothermal route. SEM observation shows that the size of the particles ranges from 60 to 120 nm and the average particle size is ~85 nm. TEM investigation shows that the particles are made up of subgrains with size of 5–10 nm. The bandgap energy...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2015-01, Vol.2015 (2015), p.1-7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spherical Bi2WO6 nanoparticles were synthesized by a hydrothermal route. SEM observation shows that the size of the particles ranges from 60 to 120 nm and the average particle size is ~85 nm. TEM investigation shows that the particles are made up of subgrains with size of 5–10 nm. The bandgap energy of the particles is measured to be 2.93 eV by ultraviolet-visible diffuse reflectance spectroscopy. RhB was chosen as the target pollutant to evaluate the photocatalytic activity of the particles under irradiation of simulated sunlight, revealing that they exhibit an obvious photocatalytic activity. The effects of ethanol, KI, and BQ on the photocatalytic efficiency of Bi2WO6 particles towards the RhB degradation were investigated. It is observed that ethanol has no effect on the photocatalytic degradation of RhB, whereas KI and BQ exhibit a substantial suppression of RhB degradation. No hydroxyl (•OH) is found, by the photoluminescence technique using terephthalic acid as a probe molecule, to be produced over the irradiated Bi2WO6 particles. Based on the experimental results, photoexcited hole (h+) and superoxide (•O2-) are suggested to be the two main active species responsible for the dye degradation, while •OH plays a negligible role in the photocatalysis. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2015/146327 |