Study on the evolution mechanism of oxidation and copper diffusion and precipitation phenomena and their effect on the surface quality of steel plates

Purpose – Identification of the critical process conditions that enhance Cu diffusion in ferrite grain boundaries and promote precipitation of Cu-rich particles in the proximity of steel semi-finished products surface is crucial for every steel maker as it leads to the creation of hot shortness crac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of structural integrity 2015-04, Vol.6 (2), p.214-224
Hauptverfasser: Papaefthymiou, Spyros, Goulas, Constantinos, Panteleakou, Vasiliki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose – Identification of the critical process conditions that enhance Cu diffusion in ferrite grain boundaries and promote precipitation of Cu-rich particles in the proximity of steel semi-finished products surface is crucial for every steel maker as it leads to the creation of hot shortness cracks in final products deteriorating surface condition. The purpose of this paper is to reveal the possible effect of Cu segregation in the metal/oxide interface, its role in surface crack initiation and, finally, to propose actions to prevent from hot shortness issues throughout the production chain of steel products. Design/methodology/approach – The here presented study was based on S355 steel plate production starting from re-melting of scrap in an EAF, followed by metallurgical treatment in a Ladle Furnace, continuous casting, re-heating (RH) and thermo-mechanical rolling in a reversing mill. For the purposes of this study, more than ten heats, 100 t of steel each, were analyzed. Here presented are depicted steels in the high and low end of the permitted Cu-wt-% spectrum, 0.4 wt-% Cu (0.15 wt-% C, 1.1 wt-% Mn, VTi micro-alloyed steel) and 0.25 wt-% Cu (0.09 wt-% C, 1.2 wt-% Mn, NbTi micro alloyed steel), respectively. Findings – Although Cu levels of 0.25-0.40 wt-% are well below the Cu solubility in austenite and ferrite (8 percent wt-% and 3 wt-% Cu, respectively) and within specifications, precipitation of Cu-rich particles is observed in industrial semi-finished and/or final products. Cu-rich precipitates and Cu segregation along grain boundaries near the steel surface lead to hot shortness cracks in industrial products. Research limitations/implications – Hot shortness surface defects related to Cu presence in steel having significantly lower Cu amounts than its maximum solubility in austenite and ferrite does not make sense in first place. Correctly, Cu is expected to remain in solid solution. Identification of Cu-rich particles is explained on the basis of the development of double diffusion actions: interstitial diffusion of carbon (decarburization) and substitution diffusion of copper. Root cause analysis and reliable countermeasures will save financial and material resources during steel production. Originality/value – Automobile scrap re-melting results in noticeable Cu amounts in EAF produced steel. Presence of Cu-rich particles in grain boundaries near the surface of intermediate or final products deteriorates surface quality through relevant sur
ISSN:1757-9864
1757-9872
DOI:10.1108/IJSI-08-2013-0018