Ridge Fusion in Statistical Learning

This article proposes a penalized likelihood method to jointly estimate multiple precision matrices for use in quadratic discriminant analysis (QDA) and model-based clustering. We use a ridge penalty and a ridge fusion penalty to introduce shrinkage and promote similarity between precision matrix es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2015-04, Vol.24 (2), p.439-454
Hauptverfasser: Price, Bradley S., Geyer, Charles J., Rothman, Adam J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a penalized likelihood method to jointly estimate multiple precision matrices for use in quadratic discriminant analysis (QDA) and model-based clustering. We use a ridge penalty and a ridge fusion penalty to introduce shrinkage and promote similarity between precision matrix estimates. We use blockwise coordinate descent for optimization, and validation likelihood is used for tuning parameter selection. Our method is applied in QDA and semi-supervised model-based clustering.
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2014.920709