High Power Lateral Silicon Carbide Photoconductive Semiconductor Switches and Investigation of Degradation Mechanisms
Several generations of high power, lateral, linear mode, intrinsically triggered 4H-SiC photoconductive semiconductor switch designs and their performance are presented. These switches were fabricated from high purity semi-insulating 4H-SiC samples measuring 12.7 mm × 12.7 mm × 0.36 mm and were able...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2015-06, Vol.43 (6), p.2021-2031 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several generations of high power, lateral, linear mode, intrinsically triggered 4H-SiC photoconductive semiconductor switch designs and their performance are presented. These switches were fabricated from high purity semi-insulating 4H-SiC samples measuring 12.7 mm × 12.7 mm × 0.36 mm and were able to block dc electric fields up to 370 kV/cm with leakage currents less than 10 μA without failure. Switching voltages and current s up to 26 kV and 450 A were achieved with these devices and ON-state resistances of 2 Ω were achieved with 1 mJ of 355 nm laser energy (7 ns FWHM). After fewer than 100 high power switching cycles, these devices exhibited cracks near the metal/SiC interface. Experimental and simulation results investigating the root cause of this failure mechanism are also presented. These results strongly suggest that a transient spike in the magnitude of the electric field at the metal/SiC interface during both switch closing and opening is the dominant cause of the observed cracking. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2015.2424154 |