Computing optimal rebalance frequency for log-optimal portfolios in linear time
The pure form of log-optimal investment strategies are often considered to be impractical due to the inherent need for continuous rebalancing. It is however possible to improve investor log utility by adopting a discrete-time periodic rebalancing strategy. Under the assumptions of geometric Brownian...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2015-07, Vol.15 (7), p.1191-1204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pure form of log-optimal investment strategies are often considered to be impractical due to the inherent need for continuous rebalancing. It is however possible to improve investor log utility by adopting a discrete-time periodic rebalancing strategy. Under the assumptions of geometric Brownian motion for assets and approximate log-normality for a sum of log-normal random variables, we find that the optimum rebalance frequency is a piecewise continuous function of investment horizon. One can construct this rebalance strategy function, called the optimal rebalance frequency function, up to a specified investment horizon given a limited trajectory of the expected log of portfolio growth when the initial portfolio is never rebalanced. We develop the analytical framework to compute the optimal rebalance strategy in linear time, a significant improvement from the previously proposed search-based quadratic time algorithm. |
---|---|
ISSN: | 1469-7688 1469-7696 |
DOI: | 10.1080/14697688.2014.926020 |