Improving Policy Functions in High-Dimensional Dynamic Games
In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to...
Gespeichert in:
Veröffentlicht in: | NBER Working Paper Series 2015-04, p.21124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 21124 |
container_title | NBER Working Paper Series |
container_volume | |
creator | Bajari, Patrick L Jiang, Ying Manzanares, Carlos A |
description | In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy. |
doi_str_mv | 10.3386/w21124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_1687949545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nber_id>w21124</nber_id><sourcerecordid>3714618841</sourcerecordid><originalsourceid>FETCH-LOGICAL-e725-1981c581c425282965e38b7c1e308fe224c47f5aa1b3ddac081420656ccf13143</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAcFKxVf4CngOfVTL42AS_S2g8otIfel2yarSm72brpKvvvG1jxMAwMDy8vg9ATkFfGlHz7pQCU36AJUVplVLP8Dt3HeCKEKkVggt7Xzblrf3w44l1bezvgRR_sxbchYh_wyh-_srlvXIjpZGo8H4JpvMVL07j4gG4rU0f3-LenaL_43M9W2Wa7XM8-NpnLqchAK7AiDaeCKqqlcEyVuQXHiKocpdzyvBLGQMkOB2OJAk6JFNLaChhwNkUvY2xq-t27eClObd-lNrEAqXLNteAiKTwqZ9vgY3HufGO6oQDCpdAcGEvkeSShdN0_GH_ErotuV4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687949545</pqid></control><display><type>article</type><title>Improving Policy Functions in High-Dimensional Dynamic Games</title><source>National Bureau of Economic Research Publications</source><source>Alma/SFX Local Collection</source><creator>Bajari, Patrick L ; Jiang, Ying ; Manzanares, Carlos A</creator><creatorcontrib>Bajari, Patrick L ; Jiang, Ying ; Manzanares, Carlos A</creatorcontrib><description>In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w21124</identifier><language>eng</language><publisher>Cambridge, Mass: National Bureau of Economic Research</publisher><subject>Algorithms ; Computer science ; Computers ; Distribution costs ; Econometrics ; Economic policy ; Economic theory ; Economics ; Equilibrium ; Game theory ; Games ; Industrial Organization ; Machine learning ; Markov analysis ; Optimization ; Retail stores ; Studies ; Technical Working Papers ; Variables</subject><ispartof>NBER Working Paper Series, 2015-04, p.21124</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Apr 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Bajari, Patrick L</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Manzanares, Carlos A</creatorcontrib><title>Improving Policy Functions in High-Dimensional Dynamic Games</title><title>NBER Working Paper Series</title><description>In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Computers</subject><subject>Distribution costs</subject><subject>Econometrics</subject><subject>Economic policy</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Industrial Organization</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Optimization</subject><subject>Retail stores</subject><subject>Studies</subject><subject>Technical Working Papers</subject><subject>Variables</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>NBR</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo90E1LAzEQBuAcFKxVf4CngOfVTL42AS_S2g8otIfel2yarSm72brpKvvvG1jxMAwMDy8vg9ATkFfGlHz7pQCU36AJUVplVLP8Dt3HeCKEKkVggt7Xzblrf3w44l1bezvgRR_sxbchYh_wyh-_srlvXIjpZGo8H4JpvMVL07j4gG4rU0f3-LenaL_43M9W2Wa7XM8-NpnLqchAK7AiDaeCKqqlcEyVuQXHiKocpdzyvBLGQMkOB2OJAk6JFNLaChhwNkUvY2xq-t27eClObd-lNrEAqXLNteAiKTwqZ9vgY3HufGO6oQDCpdAcGEvkeSShdN0_GH_ErotuV4U</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Bajari, Patrick L</creator><creator>Jiang, Ying</creator><creator>Manzanares, Carlos A</creator><general>National Bureau of Economic Research</general><general>National Bureau of Economic Research, Inc</general><scope>CZO</scope><scope>MPB</scope><scope>NBR</scope><scope>XD6</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150401</creationdate><title>Improving Policy Functions in High-Dimensional Dynamic Games</title><author>Bajari, Patrick L ; Jiang, Ying ; Manzanares, Carlos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e725-1981c581c425282965e38b7c1e308fe224c47f5aa1b3ddac081420656ccf13143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Computers</topic><topic>Distribution costs</topic><topic>Econometrics</topic><topic>Economic policy</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Industrial Organization</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Optimization</topic><topic>Retail stores</topic><topic>Studies</topic><topic>Technical Working Papers</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Bajari, Patrick L</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Manzanares, Carlos A</creatorcontrib><collection>NBER Working Papers</collection><collection>NBER</collection><collection>National Bureau of Economic Research Publications</collection><collection>NBER Technical Working Papers Archive</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajari, Patrick L</au><au>Jiang, Ying</au><au>Manzanares, Carlos A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Policy Functions in High-Dimensional Dynamic Games</atitle><jtitle>NBER Working Paper Series</jtitle><date>2015-04-01</date><risdate>2015</risdate><spage>21124</spage><pages>21124-</pages><issn>0898-2937</issn><abstract>In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.</abstract><cop>Cambridge, Mass</cop><pub>National Bureau of Economic Research</pub><doi>10.3386/w21124</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2937 |
ispartof | NBER Working Paper Series, 2015-04, p.21124 |
issn | 0898-2937 |
language | eng |
recordid | cdi_proquest_journals_1687949545 |
source | National Bureau of Economic Research Publications; Alma/SFX Local Collection |
subjects | Algorithms Computer science Computers Distribution costs Econometrics Economic policy Economic theory Economics Equilibrium Game theory Games Industrial Organization Machine learning Markov analysis Optimization Retail stores Studies Technical Working Papers Variables |
title | Improving Policy Functions in High-Dimensional Dynamic Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Policy%20Functions%20in%20High-Dimensional%20Dynamic%20Games&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Bajari,%20Patrick%20L&rft.date=2015-04-01&rft.spage=21124&rft.pages=21124-&rft.issn=0898-2937&rft_id=info:doi/10.3386/w21124&rft_dat=%3Cproquest_econi%3E3714618841%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687949545&rft_id=info:pmid/&rft_nber_id=w21124&rfr_iscdi=true |