Improving Policy Functions in High-Dimensional Dynamic Games

In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2015-04, p.21124
Hauptverfasser: Bajari, Patrick L, Jiang, Ying, Manzanares, Carlos A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 21124
container_title NBER Working Paper Series
container_volume
creator Bajari, Patrick L
Jiang, Ying
Manzanares, Carlos A
description In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.
doi_str_mv 10.3386/w21124
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_1687949545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nber_id>w21124</nber_id><sourcerecordid>3714618841</sourcerecordid><originalsourceid>FETCH-LOGICAL-e725-1981c581c425282965e38b7c1e308fe224c47f5aa1b3ddac081420656ccf13143</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAcFKxVf4CngOfVTL42AS_S2g8otIfel2yarSm72brpKvvvG1jxMAwMDy8vg9ATkFfGlHz7pQCU36AJUVplVLP8Dt3HeCKEKkVggt7Xzblrf3w44l1bezvgRR_sxbchYh_wyh-_srlvXIjpZGo8H4JpvMVL07j4gG4rU0f3-LenaL_43M9W2Wa7XM8-NpnLqchAK7AiDaeCKqqlcEyVuQXHiKocpdzyvBLGQMkOB2OJAk6JFNLaChhwNkUvY2xq-t27eClObd-lNrEAqXLNteAiKTwqZ9vgY3HufGO6oQDCpdAcGEvkeSShdN0_GH_ErotuV4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687949545</pqid></control><display><type>article</type><title>Improving Policy Functions in High-Dimensional Dynamic Games</title><source>National Bureau of Economic Research Publications</source><source>Alma/SFX Local Collection</source><creator>Bajari, Patrick L ; Jiang, Ying ; Manzanares, Carlos A</creator><creatorcontrib>Bajari, Patrick L ; Jiang, Ying ; Manzanares, Carlos A</creatorcontrib><description>In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w21124</identifier><language>eng</language><publisher>Cambridge, Mass: National Bureau of Economic Research</publisher><subject>Algorithms ; Computer science ; Computers ; Distribution costs ; Econometrics ; Economic policy ; Economic theory ; Economics ; Equilibrium ; Game theory ; Games ; Industrial Organization ; Machine learning ; Markov analysis ; Optimization ; Retail stores ; Studies ; Technical Working Papers ; Variables</subject><ispartof>NBER Working Paper Series, 2015-04, p.21124</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Apr 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Bajari, Patrick L</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Manzanares, Carlos A</creatorcontrib><title>Improving Policy Functions in High-Dimensional Dynamic Games</title><title>NBER Working Paper Series</title><description>In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Computers</subject><subject>Distribution costs</subject><subject>Econometrics</subject><subject>Economic policy</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Industrial Organization</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Optimization</subject><subject>Retail stores</subject><subject>Studies</subject><subject>Technical Working Papers</subject><subject>Variables</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>NBR</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo90E1LAzEQBuAcFKxVf4CngOfVTL42AS_S2g8otIfel2yarSm72brpKvvvG1jxMAwMDy8vg9ATkFfGlHz7pQCU36AJUVplVLP8Dt3HeCKEKkVggt7Xzblrf3w44l1bezvgRR_sxbchYh_wyh-_srlvXIjpZGo8H4JpvMVL07j4gG4rU0f3-LenaL_43M9W2Wa7XM8-NpnLqchAK7AiDaeCKqqlcEyVuQXHiKocpdzyvBLGQMkOB2OJAk6JFNLaChhwNkUvY2xq-t27eClObd-lNrEAqXLNteAiKTwqZ9vgY3HufGO6oQDCpdAcGEvkeSShdN0_GH_ErotuV4U</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Bajari, Patrick L</creator><creator>Jiang, Ying</creator><creator>Manzanares, Carlos A</creator><general>National Bureau of Economic Research</general><general>National Bureau of Economic Research, Inc</general><scope>CZO</scope><scope>MPB</scope><scope>NBR</scope><scope>XD6</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150401</creationdate><title>Improving Policy Functions in High-Dimensional Dynamic Games</title><author>Bajari, Patrick L ; Jiang, Ying ; Manzanares, Carlos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e725-1981c581c425282965e38b7c1e308fe224c47f5aa1b3ddac081420656ccf13143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Computers</topic><topic>Distribution costs</topic><topic>Econometrics</topic><topic>Economic policy</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Industrial Organization</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Optimization</topic><topic>Retail stores</topic><topic>Studies</topic><topic>Technical Working Papers</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Bajari, Patrick L</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Manzanares, Carlos A</creatorcontrib><collection>NBER Working Papers</collection><collection>NBER</collection><collection>National Bureau of Economic Research Publications</collection><collection>NBER Technical Working Papers Archive</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajari, Patrick L</au><au>Jiang, Ying</au><au>Manzanares, Carlos A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Policy Functions in High-Dimensional Dynamic Games</atitle><jtitle>NBER Working Paper Series</jtitle><date>2015-04-01</date><risdate>2015</risdate><spage>21124</spage><pages>21124-</pages><issn>0898-2937</issn><abstract>In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.</abstract><cop>Cambridge, Mass</cop><pub>National Bureau of Economic Research</pub><doi>10.3386/w21124</doi></addata></record>
fulltext fulltext
identifier ISSN: 0898-2937
ispartof NBER Working Paper Series, 2015-04, p.21124
issn 0898-2937
language eng
recordid cdi_proquest_journals_1687949545
source National Bureau of Economic Research Publications; Alma/SFX Local Collection
subjects Algorithms
Computer science
Computers
Distribution costs
Econometrics
Economic policy
Economic theory
Economics
Equilibrium
Game theory
Games
Industrial Organization
Machine learning
Markov analysis
Optimization
Retail stores
Studies
Technical Working Papers
Variables
title Improving Policy Functions in High-Dimensional Dynamic Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Policy%20Functions%20in%20High-Dimensional%20Dynamic%20Games&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Bajari,%20Patrick%20L&rft.date=2015-04-01&rft.spage=21124&rft.pages=21124-&rft.issn=0898-2937&rft_id=info:doi/10.3386/w21124&rft_dat=%3Cproquest_econi%3E3714618841%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687949545&rft_id=info:pmid/&rft_nber_id=w21124&rfr_iscdi=true