Improving Policy Functions in High-Dimensional Dynamic Games
In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to...
Gespeichert in:
Veröffentlicht in: | NBER Working Paper Series 2015-04, p.21124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy. |
---|---|
ISSN: | 0898-2937 |
DOI: | 10.3386/w21124 |