Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order

The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin-Voigt fluid of nonzero order is described. The investigation is based on the theory of semilinear Sobolev-type equations and the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2015-05, Vol.55 (5), p.823-828
Hauptverfasser: Kondyukov, A. O., Sukacheva, T. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin-Voigt fluid of nonzero order is described. The investigation is based on the theory of semilinear Sobolev-type equations and the concepts of a relatively spectral bounded operator and a quasi-stationary trajectory for the corresponding Oskolkov system modeling the plane-parallel flow of the above fluid.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542515050127