Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin-Voigt fluid of nonzero order is described. The investigation is based on the theory of semilinear Sobolev-type equations and the c...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2015-05, Vol.55 (5), p.823-828 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin-Voigt fluid of nonzero order is described. The investigation is based on the theory of semilinear Sobolev-type equations and the concepts of a relatively spectral bounded operator and a quasi-stationary trajectory for the corresponding Oskolkov system modeling the plane-parallel flow of the above fluid. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542515050127 |