High-mobility group box 1 accelerates lipopolysaccharide-induced lung fibroblast proliferation in vitro: involvement of the NF-[kappa]B signaling pathway

The mechanism underlying lipopolysaccharide (LPS)-induced aberrant proliferation of lung fibroblasts in Gram-negative bacilli-associated pulmonary fibrosis is unknown. High-mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is released from the nuclei of lung fibroblasts after LPS sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laboratory investigation 2015-06, Vol.95 (6), p.635
Hauptverfasser: Li, Wen, Xu, Qiaoyi, Deng, Yuxiao, Yang, Zhongwei, Xing, Shunpeng, Zhao, Xianyuan, Zhu, Ping, Wang, Xiangrui, He, Zhengyu, Gao, Yuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism underlying lipopolysaccharide (LPS)-induced aberrant proliferation of lung fibroblasts in Gram-negative bacilli-associated pulmonary fibrosis is unknown. High-mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is released from the nuclei of lung fibroblasts after LPS stimulation. It can exasperate LPS-induced inflammation and hasten cell proliferation. Thus, this study investigated the effects of LPS- and/or HMGB1-stimulating murine lung fibroblasts on gene expression using various assays in vitro. Thiazolyl-diphenyl-tetrazolium bromide (MTT) assay data showed that either LPS or HMGB1 could induce lung fibroblast proliferation. Endogenous HMGB1 secreted from lung fibroblasts was detected by enzyme-linked immunosorbent assay (ELISA) 48 h after LPS stimulation. Pretreatment with an anti-HMGB1 antibody inhibited the proliferative effects of LPS on lung fibroblasts. DNA microarray data showed that the NF-κB signaling genes were upregulated in cells after stimulated with LPS, HMGB1, or both. Secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and tissue inhibitor of metalloproteinase 2 (TIMP-2) was significantly upregulated after treatment with LPS, HMGB1, or their combination. However, an NF-κB inhibitor was able to downregulate levels of these proteins. In addition, levels of Toll-like receptor 4 (TLR4), Toll-like receptor 2 (TLR2), and receptors for advanced glycation end products (RAGE) mRNA and proteins were also upregulated in these cells after LPS treatment and further upregulated by LPS plus HMGB1. In conclusion, the data from the current study demonstrate that LPS-induced lung fibroblast secretion of endogenous HMGB1 can augment the proproliferative effects of LPS and, therefore, may play a key role in exacerbation of pulmonary fibrosis. The underlying molecular mechanisms are related to the activation of the TLR4/NF-κB signaling pathway and its downstream targets.
ISSN:0023-6837
1530-0307
DOI:10.1038/labinvest.2015.44