[Sigma]-algebraically compact modules and L [omega] 1 [omega]-compact cardinals
We prove that the property Add (M )Prod (M ) characterizes Σ-algebraically compact modules if |M | is not [omega]-measurable. Moreover, under a large cardinal assumption, we show that over any ring R where |R | is not [omega]-measurable, any free module M of [omega]-measurable rank satisfies Add (M...
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2015-05, Vol.61 (3), p.196 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; fre ; ger |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the property Add (M )Prod (M ) characterizes Σ-algebraically compact modules if |M | is not [omega]-measurable. Moreover, under a large cardinal assumption, we show that over any ring R where |R | is not [omega]-measurable, any free module M of [omega]-measurable rank satisfies Add (M )Prod (M ), hence the assumption on |M | cannot be dropped in general (e.g., over small non-right perfect rings). In this way, we extend results from a recent paper by Simion Breaz . |
---|---|
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.201400054 |