[Sigma]-algebraically compact modules and L [omega] 1 [omega]-compact cardinals

We prove that the property Add (M )Prod (M ) characterizes Σ-algebraically compact modules if |M | is not [omega]-measurable. Moreover, under a large cardinal assumption, we show that over any ring R where |R | is not [omega]-measurable, any free module M of [omega]-measurable rank satisfies Add (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2015-05, Vol.61 (3), p.196
1. Verfasser: Saroch, Jan
Format: Artikel
Sprache:eng ; fre ; ger
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the property Add (M )Prod (M ) characterizes Σ-algebraically compact modules if |M | is not [omega]-measurable. Moreover, under a large cardinal assumption, we show that over any ring R where |R | is not [omega]-measurable, any free module M of [omega]-measurable rank satisfies Add (M )Prod (M ), hence the assumption on |M | cannot be dropped in general (e.g., over small non-right perfect rings). In this way, we extend results from a recent paper by Simion Breaz .
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.201400054