Risk Neurogenes for Long-Term Spaceflight: Dopamine and Serotonin Brain System
Mice were exposed to 1 month of spaceflight on Russian biosatellite BION-M1 to determine its effect on the expression of key genes in the brain dopamine (DA) and serotonin (5-HT) systems. Spaceflight decreased the expression of crucial genes involved in DA synthesis and degradation, as well as the D...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2015-06, Vol.51 (3), p.1443-1451 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mice were exposed to 1 month of spaceflight on Russian biosatellite BION-M1 to determine its effect on the expression of key genes in the brain dopamine (DA) and serotonin (5-HT) systems. Spaceflight decreased the expression of crucial genes involved in DA synthesis and degradation, as well as the D1 receptor. However, spaceflight failed to alter the expression of tryptophan hydroxylase-2, 5-HT transporter, 5-HT
1A
, and 5-HT
3
receptor genes, though it reduced 5-HT
2A
receptor gene expression in the hypothalamus. We revealed risk DA and 5-HT neurogenes for long-term spaceflight for the first time, as well as microgravity-responsive genes (tyrosine hydroxylase, catechol-O-methyltransferase, and D1 receptor in the nigrostriatal system; D1 and 5-HT
2A
receptors in the hypothalamus; and monoamine oxidase A (MAO A) in the frontal cortex). Decreased genetic control of the DA system may contribute to the spaceflight-induced locomotor impairment and dyskinesia described for both humans and rats. |
---|---|
ISSN: | 0893-7648 1559-1182 |
DOI: | 10.1007/s12035-014-8821-7 |