Weighted quasilinear eigenvalue problems in exterior domains

We consider the following weighted eigenvalue problem in the exterior domain: - Δ p u = λ K ( x ) | u | p - 2 u in B 1 c , u = 0 on ∂ B 1 , where Δ p is the p -Laplace operator with p > 1 , and B 1 c is the exterior of the closed unit ball in R N with N ≥ 1 . There is no restriction on the dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2015-07, Vol.53 (3-4), p.961-975
Hauptverfasser: Anoop, T. V., Drábek, Pavel, Sasi, Sarath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the following weighted eigenvalue problem in the exterior domain: - Δ p u = λ K ( x ) | u | p - 2 u in B 1 c , u = 0 on ∂ B 1 , where Δ p is the p -Laplace operator with p > 1 , and B 1 c is the exterior of the closed unit ball in R N with N ≥ 1 . There is no restriction on the dimension N in terms of p , i.e., we allow both 1 < p < N and p ≥ N . The weight function K is locally integrable on B 1 c and is allowed to change its sign. For some appropriate choice of w , a positive weight function on the interval ( 1 , ∞ ) , we prove that the Beppo-Levi space D 0 1 , p ( B 1 c ) is compactly embedded into the weighted Lebesgue space L p ( B 1 c ; w ( | x | ) ) . The existence of the positive eigenvalue for the above problem is proved for K such that supp K + is of non-zero measure and | K | ≤ w . Further, we discuss the positivity, the regularity and the asymptotic behaviour at infinity of the first eigenfunctions.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-014-0773-2