Sidewall and non-uniformity corrections for flume experiments

Studying open channel flow and sediment transport in narrow flumes under non-uniform flow conditions, both sidewall and non-uniformity corrections are required for bed-shear stress. This research first reviews conventional predictive methods for bed-shear stress, including the flow-depth method, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic research 2015-03, Vol.53 (2), p.218-229
1. Verfasser: Guo, Junke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying open channel flow and sediment transport in narrow flumes under non-uniform flow conditions, both sidewall and non-uniformity corrections are required for bed-shear stress. This research first reviews conventional predictive methods for bed-shear stress, including the flow-depth method, the hydraulic radius method and Einstein's sidewall correction. It then presents a novel procedure for sidewall and non-uniformity corrections based on a recent cross-sectional velocity distribution model. These methods are compared with data from the log-law under uniform and non-uniform, sub- and supercritical flow conditions, indicating that (i) the flow-depth and the hydraulic radius methods specify the upper and lower bounds for bed-shear stress; (ii) although Einstein's procedure causes a paradox for smooth flumes, it agrees with data from rough beds; and (iii) the proposed is better than Einstein's for subcritical flow, but the latter has advantage for supercritical flow. As an application, sediment inception under non-uniform flow conditions is also discussed.
ISSN:0022-1686
1814-2079
DOI:10.1080/00221686.2014.971449