Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber

A cellulose derivative, carboxymethyl cellulose (CMC), was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4) were prepared by the solution-casting technique....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2014-09, Vol.6 (9), p.2371-2385
Hauptverfasser: Rani, Mohd, Rudhziah, Siti, Ahmad, Azizan, Mohamed, Nor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A cellulose derivative, carboxymethyl cellulose (CMC), was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4) were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC-CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10-4 S cm-1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym6092371