Sparse signal recovery using orthogonal matching pursuit (OMP)
Compressive sensing is an emergent field of signal processing which states that a small number of non-adaptive linear projections on a compressible signal contain enough information to reconstruct and process it. This paper presents the results of evaluating five measurement matrices for applying th...
Gespeichert in:
Veröffentlicht in: | Ingeniería e investigación 2009-05, Vol.29 (2), p.112-118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compressive sensing is an emergent field of signal processing which states that a small number of non-adaptive linear projections on a compressible signal contain enough information to reconstruct and process it. This paper presents the results of evaluating five measurement matrices for applying them to compressive sensing in a system using orthogonal matching pursuit (OMP) to reconstruct the original signal. The measurement matrices were those implicated in compressive sensing as well as in reconstructing the signal. The Hadamard-random matrix stood out within this group of matrices because the lowest percentage of error in signal recovery was obtained with it. This paper also presents a methodology for evaluating these matrices, allowing subsequent analysis of their suitability for specific applications. |
---|---|
ISSN: | 0120-5609 2248-8723 |
DOI: | 10.15446/ing.investig.v29n2.15171 |