High-frequency forcing of a turbulent axisymmetric wake

A high-frequency periodic jet, issuing immediately below the point of separation, is used to force the turbulent wake of a bluff axisymmetric body, its axis aligned with the free stream. It is shown that the base pressure may be varied more or less at will: at forcing frequencies several times that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2015-05, Vol.770, p.305-318
Hauptverfasser: Oxlade, Anthony R., Morrison, Jonathan F., Qubain, Ala, Rigas, Georgios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-frequency periodic jet, issuing immediately below the point of separation, is used to force the turbulent wake of a bluff axisymmetric body, its axis aligned with the free stream. It is shown that the base pressure may be varied more or less at will: at forcing frequencies several times that of the shear layer frequency, the time-averaged area-weighted base pressure increases by as much as 35 %. An investigation of the effects of forcing is made using random and phase-locked two-component particle image velocimetry (PIV), and modal decomposition of pressure fluctuations on the base of the model. The forcing does not target specific local or global wake instabilities: rather, the high-frequency jet creates a row of closely spaced vortex rings, immediately adjacent to which are regions of large shear on each side. These shear layers are associated with large dissipation and inhibit the entrainment of fluid. The resulting pressure recovery is proportional to the strength of the vortices and is accompanied by a broadband suppression of base pressure fluctuations associated with all modes. The optimum forcing frequency, at which amplification of the shear layer mode approaches unity gain, is roughly five times the shear layer frequency.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2015.153