Non-parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment

Assessing the absolute risk for a future disease event in presently healthy individuals has an important role in the primary prevention of cardiovascular diseases (CVD) and other chronic conditions. In this paper, we study the use of non-parametric Bayesian hazard regression techniques and posterior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2015-06, Vol.42 (2), p.609-626
Hauptverfasser: SAARELA, OLLI, ARJAS, ELJA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessing the absolute risk for a future disease event in presently healthy individuals has an important role in the primary prevention of cardiovascular diseases (CVD) and other chronic conditions. In this paper, we study the use of non-parametric Bayesian hazard regression techniques and posterior predictive inferences in the risk assessment task. We generalize our previously published Bayesian multivariate monotonic regression procedure to a survival analysis setting, combined with a computationally efficient estimation procedure utilizing case–base sampling. To achieve parsimony in the model fit, we allow for multidimensional relationships within specified subsets of risk factors, determined either on a priori basis or as a part of the estimation procedure. We apply the proposed methods for 10-year CVD risk assessment in a Finnish population.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12125