Alleviation of Salt Stress in Seedlings of Black Glutinous Rice by Seed Priming with Spermidine and Gibberellic Acid

This study was carried out to elucidate the spermidine (Spd) and gibberellic acid (GA3) priming-induced physiological and biochemical changes responsible for induction of salinity tolerance in two rice (Oryza sativa L.) cultivars, namely ‘Niewdam Gs. no. 00621’ (salt tolerant) and ‘KKU-LLR-039...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Notulae botanicae Horti agrobotanici Cluj-Napoca 2014-07, Vol.42 (2), p.405-413
Hauptverfasser: CHUNTHABUREE, Sumitahnun, SANITCHON, Jirawat, PATTANAGUL, Wattana, THEERAKULPISUT, Piyada
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was carried out to elucidate the spermidine (Spd) and gibberellic acid (GA3) priming-induced physiological and biochemical changes responsible for induction of salinity tolerance in two rice (Oryza sativa L.) cultivars, namely ‘Niewdam Gs. no. 00621’ (salt tolerant) and ‘KKU-LLR-039’ (salt sensitive). The seeds of the two cultivars were primed separately with distilled water, 1 mM Spd or 0.43 mM GA3. Primed seeds were germinated and the resultant seedlings were hydroponically grown for 14 days before being exposed to salinity stress (150 mM NaCl) for 10 days. Seed priming with Spd or GA3 slightly improved salt-induced reductions in growth, anthocyanin and chlorophyll contents of the seedlings. Salt stress induced pronounced increases in Na+/K+ ratio, proline and H2O2 contents, particularly in the sensitive cultivar. The levels of these salt-sensitivity physiological indicators tended to be mitigated by priming with Spd and GA3. Salt-stressed seedlings grown from seeds primed with these growth regulators also possessed higher phenolic contents and greater antioxidant capacity than the control seedlings. Based on all growth and physiological data, Spd tended to be more effective than A3 in improving salt tolerance in both rice cultivars.
ISSN:0255-965X
1842-4309
DOI:10.15835/nbha4229688