Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM , a membrane adhesion molecule, and A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (11), p.E1272-E1277
Hauptverfasser: Kannan, Kalpana, Coarfa, Cristian, Chao, Pei-Wen, Luo, Liming, Wang, Yan, Brinegar, Amy E, Hawkins, Shannon M, Milosavljevic, Aleksandar, Matzuk, Martin M, Yen, Laising
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM , a membrane adhesion molecule, and AKT2 , a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. Significance High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer and is typically detected only at advanced stages due to lack of effective early screening tools. Fusion genes are among the most cancer-specific signatures known and, when highly recurrent, they have the potential to serve as screening tools. Here we identified BCAM-AKT2 as a cancer-specific fusion gene present in 7% of HGSC tumors, a significant frequency in this highly heterogeneous disease. This fusion results in an aberrant kinase whose constant activity contributes to cancer formation. Thus, the BCAM-AKT2 fusion gene could be important for understanding and identifying clinically relevant subtypes of HGSC, and could be a novel therapeutic target for developing small-molecule drugs.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1501735112