Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates

This paper reports on the successful fabrication of a multilayered hybrid printed circuit board (PCB) for applications in the consumer electronics products, medical technologies, and military equipment. The PCB was fabricated by screen-printing silver (Ag) flake ink, as metallization layer, and UV a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2015-03, Vol.5 (3), p.415-421
Hauptverfasser: Eshkeiti, Ali, Reddy, Avuthu S. G., Emamian, Sepehr, Narakathu, Binu B., Joyce, Michael, Joyce, Margaret, Fleming, Paul D., Bazuin, Bradley J., Atashbar, Massood Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on the successful fabrication of a multilayered hybrid printed circuit board (PCB) for applications in the consumer electronics products, medical technologies, and military equipment. The PCB was fabricated by screen-printing silver (Ag) flake ink, as metallization layer, and UV acrylic-based ink, as dielectric layer, on different substrates such as paper, polyethylene terephthalate, and glass. Traditional electronic components were attached onto the printed pads to create the multilayered hybrid PCB. The feasibility of the hybrid PCB was demonstrated by integrating an embedded microcontroller to drive an liquid-crystal display (160 × 100 pixels). In addition, the amount of the ink spreading after printing, the effect of bending on the printed lines, and the effect of the roughness of the substrates on the resistance of the printed lines was investigated. It was observed that the resistance of the lines increased by ≈1.8%, after 10000 cycles of bending, and the lowest resistance of 1.06 Ω was measured for the 600 μm printed lines on paper, which had a roughness of 0.175 μm. The advantage of fabricating PCBs on flexible substrates is the ability to fold and place the boards on nearly any platform or to conform to any irregular surface, whereas the additive properties of printing processes allow for a faster fabrication process, while simultaneously producing less material waste in comparison with the traditional subtractive processes. The results obtained show the promising potential of employing screen printing process for the fabrication of flexible and light-weight hybrid PCBs.
ISSN:2156-3950
2156-3985
DOI:10.1109/TCPMT.2015.2391012