Distributed computation for direct position determination emitter location
Classical geolocation based on time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) uses a two-stage estimation approach. The single-stage approach direct position determination (DPD) has been proposed to improve accuracy. However, unlike the classical two-stage method, the p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2014-10, Vol.50 (4), p.2878-2889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classical geolocation based on time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) uses a two-stage estimation approach. The single-stage approach direct position determination (DPD) has been proposed to improve accuracy. However, unlike the classical two-stage method, the proposed DPD method does all processing at a single node. That is not desirable when computational capabilities are limited and makes the approach nonrobust to loss of the central sensor. We develop and assess several DPD variants that address these issues. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2014.130005 |