Real‐time river bed scour monitoring and synchronous maximum depth data collected during Typhoon Soulik in 2013

A critical concern regarding river bed stabilization and river engineering is the short‐term general scour that occurs in a field setting far from a river‐crossing structure or embankment during a typhoon‐induced flood. This study investigated the improvement of existing techniques that have been us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2015-03, Vol.29 (6), p.1056-1068
Hauptverfasser: Yang, Han‐Chung, Su, Chih‐Chiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A critical concern regarding river bed stabilization and river engineering is the short‐term general scour that occurs in a field setting far from a river‐crossing structure or embankment during a typhoon‐induced flood. This study investigated the improvement of existing techniques that have been used to measure river bed scour. One of these techniques is the numbered‐brick column or scour chains method, in which only the maximum general scour depth of river bed is observed. A wireless tracer for monitoring real‐time scour was set‐up with a numbered‐brick column and was employed to collect synchronous data. The proposed method was successfully used to observe both real‐time scour and the maximum depth at flood peak. This observation was conducted at a steep gravel‐bed reach of the Shuideliaw Embankment on the intermittent Choshui River in Central Taiwan during Typhoon Soulik, which occurred in 2013. Future studies must be conducted to complete the development of an automatic real‐time scour and flood monitoring system for use in severe weather and flow conditions; this would facilitate the identification of river bed scour during conditions of unstable flow and the improvement of flood prevention engineering, bridge closure detection and emergency evacuation procedures. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.10219