Experimental and numerical evaluation of wavelet based damage detection methodologies
This article presents an evaluation of the capabilities of wavelet-based methodologies for damage identification in civil structures. Two different approaches were evaluated: (1) analysis of the structure frequencies evolution by means of the continuous wavelet transform and (2) analysis of the sing...
Gespeichert in:
Veröffentlicht in: | International journal of advanced structural engineering 2015-03, Vol.7 (1), p.69-80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents an evaluation of the capabilities of wavelet-based methodologies for damage identification in civil structures. Two different approaches were evaluated: (1) analysis of the structure frequencies evolution by means of the continuous wavelet transform and (2) analysis of the singularities generated in the high frequency response of the structure through the detail functions obtained via fast wavelet transform. The methodologies were evaluated using experimental and numerical simulated data. It was found that the selection of appropriate wavelet parameters is critical for a successful analysis of the signal. Wavelet parameters should be selected based on the expected frequency content of the signal and desired time and frequency resolutions. Identifications of frequency shifts via ridge extraction of the wavelet map were successful in most of the experimental and numerical scenarios investigated. Moreover, the frequency shift can be inferred most of the time but the exact time at which it occurs is not evident. However, this information can be retrieved from the spike location from the Fast Wavelet Transform analysis. Therefore, it is recommended to perform both type of analysis and look at the results together. |
---|---|
ISSN: | 2008-3556 2008-6695 |
DOI: | 10.1007/s40091-015-0084-7 |