Design and development of compact monitoring system for disaster remote health centres

Purpose: To enhance speedy communication between the patient and the doctor through newly proposed routing protocol at the mobile node. Materials and Methods: The proposed model is applied for a telemedicine application during disaster recovery management. In this paper, Energy Efficient Link Stabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of medical microbiology 2015-02, Vol.33, p.S11-S14
Hauptverfasser: Santhi, S, Sadasivam, GS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: To enhance speedy communication between the patient and the doctor through newly proposed routing protocol at the mobile node. Materials and Methods: The proposed model is applied for a telemedicine application during disaster recovery management. In this paper, Energy Efficient Link Stability Routing Protocol (EELSRP) has been developed by simulation and real time. This framework is designed for the immediate healing of affected persons in remote areas, especially at the time of the disaster where there is no hospital proximity. In case of disasters, there might be an outbreak of infectious diseases. In such cases, the patient’s medical record is also transferred by the field operator from disaster place to the hospital to facilitate the identification of the disease-causing agent and to prescribe the necessary medication. The heterogeneous networking framework provides reliable, energy efficientand speedy communication between the patient and the doctor using the proposed routing protocol at the mobile node. Results: The performance of the simulation and real time versions of the Energy Efficient Link Stability Routing Protocol (EELSRP) protocol has been analyzed. Experimental results prove the efficiency of the real-time version of EESLRP protocol. Conclusion: The packet delivery ratio and throughput of the real time version of EELSRP protocol is increased by 3% and 10%, respectively, when compared to the simulated version of EELSRP. The end-to-end delay and energy consumption are reduced by 10% and 2% in the real time version of EELSRP.
ISSN:0255-0857
1998-3646
DOI:10.4103/0255-0857.150871