Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells
Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic io...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2014-10, Vol.6 (10), p.885-892 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome
c
from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.
Anion transporters that disrupt cellular ion homeostasis could represent a new approach for generating therapeutic lead compounds. Now, two pyridine diamide-strapped calix[4]pyrroles have been shown to induce coupled chloride anion and sodium cation transport in liposomal models and cells. These compounds promote cell death by increasing intracellular chloride and sodium ion concentrations. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.2021 |