Decay estimates for nonlinear nonlocal diffusion problems in the whole space
In this paper, we obtain bounds for the decay rate in the L r (ℝ d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, . We consider a kernel of the form K ( x , y ) = ψ( y − a ( x )) + ψ( x − a ( y )), where ψ is a bounded, nonnegative function supported in the unit bal...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2014-04, Vol.122 (1), p.375-401 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we obtain bounds for the decay rate in the
L
r
(ℝ
d
)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely,
. We consider a kernel of the form
K
(
x
,
y
) = ψ(
y
−
a
(
x
)) + ψ(
x
−
a
(
y
)), where
ψ
is a bounded, nonnegative function supported in the unit ball and
a
is a linear function
a
(
x
) =
Ax
. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form
. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝ
d
:
Moreover, we deal with the
p
= ∞ eigenvalue problem, studying the limit of λ
1,
p
1/
p
as
p
→∞. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-014-0011-z |