Decay estimates for nonlinear nonlocal diffusion problems in the whole space

In this paper, we obtain bounds for the decay rate in the L r (ℝ d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, . We consider a kernel of the form K ( x , y ) = ψ( y − a ( x )) + ψ( x − a ( y )), where ψ is a bounded, nonnegative function supported in the unit bal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2014-04, Vol.122 (1), p.375-401
Hauptverfasser: Ignat, L. I., Pinasco, D., Rossi, J. D., San Antolin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we obtain bounds for the decay rate in the L r (ℝ d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, . We consider a kernel of the form K ( x , y ) = ψ( y − a ( x )) + ψ( x − a ( y )), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a ( x ) = Ax . To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form . The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝ d : Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1, p 1/ p as p →∞.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-014-0011-z